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ABSTRACT

This two-pan report is concerned with the development of a general framework

for the implicit time-stepping integrators for the flow and evolution equations in

generalized viscoplastic models. The primary goal is to present a complete theoretical
formulation, and to address in detail the algorithmic and numerical analysis aspects

involved in its finite element implementation, as well as to critically assess the numerical

performance of the developed schemes in a comprehensive set of test cases. On the

theoretical side, the general framework is developed on the basis of the unconditionally-

stable, backward-Euler difference scheme as a starting point. Its mathematical structure is

of sufficient generality to allow a unified treatment of different classes of viscoplastic

models with internal variables. In particular, two specific models of this type, which are

representatives of the present state-of-an in metal viscoplasticity, are considered in

applications reported here; i.e., fi_lly associative (GVIPS) and non-associative (NAV)
models. The matrix forms developed for both these models are directly applicable for both

initially isotropic and anisotropic materials, in general (three-dimensional) situations as
well as subspace applications (i.e., plane stress/strain, axisymmetric, generalized plane

stress in shells). On the computational side, issues related to efficiency and robustness are

emphasized in developing the (local) iterative algorithm. In particular, closed-form

expressions for residual vectors and (consistent) material tangent stiffness arrays are given
explicitly for both GVIPS and NAV models, with their maximum sizes "optimized" to
depend only on the number of independent stress components (but independent of the

number of viscoplastic internal state parameters). Significant robustness of the local

iterative solution is provided by complementing the basic Newton-Raphson scheme with a
line-search strategy for convergence. In the present second pan of the report, we focus on

the specific details of the numerical schemes, and associated computer algorithms, for the

finite-element implementation of GVIPS and NAV models.





Robust Integration Schemes for Generalized Viscoplasticity

with Internal-State Variables; Part II Algorithmic

Developments and Implementation

1. Introduction

The scope of the work in this report focuses on the implementation and algorithmic

developments of two classes of viscoplastic models: GVIPS (fully-associative) and NAV

(nonassociafive) based on the theory discussed in Part I [41] of the report. In the computer

implementation ofa viscoplastic model, the computational algorithm is the key ingredient. Over

the past years considerable research effort has been devoted to the development of

computational algorithms [1-9, 12, 16-50]. As discussed in Part I [41] of the report, initially,

simple explicit integration schemes were predominate in finite element applications because of

their ease in implementation, and because they do not require evaluating and inverting a

Jacobian matrix. However, explicit integrators may not be efficient. That is, too many iteration

steps may be required and convergence stability can not be guaranteed [32, 36, 50]. As a

result, several alternative approaches have been used, for example, Gear's multi-step method

[14] and Walker's asymptotic method [47]. Note that every integration scheme has its own

particular application domain and is ve_ problem dependent. For practical problems, it is

desirable to use an unconditionally stable integration scheme in order to obtain an acoarate

solution. Recent work has dearly emphasized the use of implicit integration methods [4-6, 12,

16, 19-20, 23-24, 29, 31, 35, 37-38, 40, 43-44, 46, 48-49] in view of their superior stability

and convergence properties [18, 34]. From the standpoint of practical applications, the one-

step, fully implicit, backward Euler scheme is presently one of the most widely used integrators

[6, 16, 18-20, 23, 31, 34, 35, 38, 39, 43, 44, 48, 49]. For the computationally intensive

viscoplastic applications, found in typical finite element analysis, implicit backward Euler
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integration methods have become the proven standard for the numerical integration of the

viscoplastic rate equations [15, 40]. Details on the imple_ent_on of both classes of

viscoplastic models (NAV, GVIPS) will be discussed in this report.

Based on thefu/_ imp_cit, backward Ealer scheme, the correspontfmg algoritl_nic

(consistent) tangent stiffness arrays are derived from the integration rule, which are important

for finite dement solutions using (global) Newton-Raphson iterative methods. Expficit, closed-

form, expressions for state variables and conshtent tangent stiffness matrixes are given for the

general three-dimensional (3D) situations, as well as for their direct modifications for the

efficient treatment of two-dimensional (2D) or _ub_.e appfications; i.e., "generalized" plane

stress states in shells. For these latter 2D problems, this simply mounts to "appropriate"

reduction in the dimensions of the arrays involved, which is known to be more effective than

alternative implementations [e.g., 12, 49], in which indirect (tterafive) methods are used to

handle the zero-stress constraints.

Beginning with the second section, and for the remainder of the report, a// equations and

expressions are shown using concise maZr/x notations for the integrated stress and imen_

stress fields. The contracted (Voigt) representations in vector forms for the components of the

corresponding symme_c, second-order, tensor are utilized and the appropriate dimensions for

the space of these vectors are defined explicitly; i.e., a six-dimensional space for 3D continuum

problem.s, etc. With a slight abuse in notations to indicate the vector-matrix representations,

matrices are defined by under-curved symbols, and vectors by underlined symbols, and ® is

used to indicate the tensor product of two vectors. Considering vectors a, b and c of

dimension (6xl) in the 3D case, we define the matrix (a ® b)c--(b, c)a, where _." signifies the

inner (scalar) product of two vectors, and ":" for a double contraction C:D (or C_ De) and

for tensor product u ® w (or t_ wj). Note that e_p indicates the inelastic strain.

Section 2 deals with the implementation of the GVIPS class of models, as descn_l in Part

I [41], and similarly section 3 explains the implementation of the NAV class models. Although



the implicit backward Eul_ imegration scheme is stable, for highly-nonlinear viseoplastic

modcts, convcrge_¢.¢ may be difficult for certain problems. As a result, line search, a numerical

tedmique based on optimization tt_ry, is u"ulized to guarantee converg_.e and improve

e_icier_'y of the integrator. Details of the line search method are discussed in section 4.

1.1 General Form of Newton Iterative Scheme

The baelcward-Ealcr scheme is based on the equation

_.+_ = _. + A___,+, (1.1)

where 7.. is state variables, and A_I is the increment of the state variables, n is the step

counter. For the GVIPS models,

for the NAV modds,

CD.J

(1.3)

the expression for the state variables' ineremem is

(1.4)



where f_ is _ Jaoobi matrix of state variables, R__.+,is the residual fimction of state

variables. The specific forms of fz and R_..+,for GVIPS and NAV are given subsequently.

2. Implicit Integration Scheme: GVIPS Class

The details of the integration algorithm, using the fully-implicit Euler method, for the

specific GVIPS model (desenq_l in Part I [41]) are given below. For convenience in

implementation, all equations of this GVIPS model are written in a vector-matrix format. This

model serves as an _le for discussing the implicit integrationscheme.

2.1. The General Form

The hypefelastic response of the model is assumed to be linear, i.e., the Cauchy (true)

stress components o are given by

a= C'(e-£') •

The governing equations for GVIPS are:

e=e'+_e p (2.1)

_"=:(p)c_ , _1-=¥(__-__) (2.2)

; __=Ma_ (2.3)

p- 1(__-__)¥(__-__)/r,_- 1 (2.4a)

G = la M a /r? (2.4b)



in which tbe synunetric mau'ix M is a fianction of the _ direction and is rewritten as

I(R (2.5)¥: P_-_Q-__ -

where P, Q, and R aresymmetricnma'iccsasde_med inPartI [41].

In eq. (2.3),

L -_= h[Z'4 h(lh+'2[3)ot®_]
(2.6a)

In the above equations, i_ h, and _, are material functions which are defined as follows,

/(p)=r/(2.r._./v_) (2.6b)

h--H/G'. V=RG'-'/(_._) (2.6C)

with, n, m, _ IG, I-I, [3, and R denoting material dependent constants.

"geacwali_ inverse" of M is defined as follows:

In addition, the

Z" = M-' (2.7a)

withMdirectly evaluated fi'om eq. (2.5) for the case of plane-stress continuum (with dimension

3 x 3) and gencraliz_ plane stress in shells (with dimension 5 × 5), but for the three-

dimens/o_ud case, P (6 × 6 dimension) in eq. (2.5) needs to be replaced by

P = d/ag[1,1,1,2,2,2] (2.7b)



with its appropriate direct reduction to (4 x 4) for the axisymme_c/plane-strain continuum

problems, that is,

P = d/ag[1,1,1,2] (2.7c)

In the abov_ diag [.] indicates a diagonal_ with enuies [.].

The basic probl_n considexcd here is as follows. Considcx a typical time step t.--+t.+_,

where the state variables at t. are known; i.e., {o_ t_ _}. Let At=t.÷,- t., and

As = At_ = _°+, -¢n be the gh,en increment in the total strain field. Based upon the quantifies

at t_, it is required to update to lime t.+_ the above fidds {_+1, a.+l, _+1} in a manner

¢_lS. (2.2, 2.3) for _kPand &, and the rate form ofconsistmt with the governing equations; i.e.,

eq. (2.1) for b, i.e.,

the matrix form ofcq. (2.3) may be wfiU_ as,

(2.Sb)

Using the implicitEuler scheme, these update formulasare given as

= + Acrr_.+,] (2.9a)

where

Y_ (2.9b)

f=f(o,,+t,a,,+,) ; h=h(a,,+,) ; Y=Y(a,,+,) (2.10)



2.2 Iterative Solution for Updated Fields

To determine the updated values for the state variables a(.q_+1,fib+t), a/oca/iterativv

solution (i.e., distinct from global equilibrium kemfions in finite dements) is needed based on

the system of equations in Eqs. (2.1 and 2.3). To this end, we apply the Newton-Raphson

schemebyfirstformingtheresidudvectors

..--.,o.

(2.11a)

(2.1 lb)

A mmcated Taylor_s expansion for the R vectors about the last updated state then yields, for a

typical iteration k_ 1:

k+l k k

k+l k k

_.+1 = _,,+i + A--a,,+l

(2.12a)

(2.12b)

Ao-_=-J-'(C'-_R_+P4P_-'R,_)~~ (2.13a)

Aa_q._k+,=- P_-_(R_,_-P2Ao-_+,)~ (2.13b)

in which J is the iteration Jacobian matrix, and the following definitions are introduced:

j = p3_p4p-_ p_~~ _ ~ ~ =C'-_+p4(I-P_-_P2)~~ ~ ~ (2.14a)

ht

Pi = Z:-' + P2+ Aty M+ [At'y' - --h--(Aty + 1)]-_ ®-_ (2.14b)



P4 =At(f g+ f'l'®F) " P2=hP4_, (2.14c)

.,-_c'-'+_,(:¥+:'c__I") (2._.d)

w

(2.14e)

and the primes indicate "sealed N_es as given below (see Eqs. 3.30 in Part I [41]):

T_lay . h,_la_ , la_, ; y- (2.15)
kf dE kf a_ I,,_a_

Note that a//the arrays and functions, e.g. L, _ x_, t_ h etc. in Eqs. (2.13) to (2.14) are

based on the tan updated state (d'..t, aL_). Note also that the state (a,, oO

corresponds to the converged global solution at the last time step; i.e., they are kept comtcmt

duringtlm localiterationsequetw.,inEq. (2.12).

2.3. Iterative Solution---Consistent Tangent Stiffness

In keeping with the undedying fully implicit integration scheme, one can

straightforwardly proceed to differeatiate the updated stress field, t_**_, to obtain the

,_,_e._m or_ t_m _ _ c-, for use in the finke dement

calculations. The derivations will in fact lead to

C "_ = _tr,+l/Bd £ ; act = C"' de_ (2.16 0

[c e,]-'c" = J-1 = "-'+P,-hP, ?,-_ (2.16b)

Clearly,C_ and P_, P_, Ps ,P4 (seeEq. 2.14)aresymmetric.



3. Implicit Integration Scheme: NAV Class

In this section, Freed's viscoplastic model [13] is used as an example to discuss the

implementation scheme of NAV. The discussion here is limited to the case of an isotropic

material under isothermal conditions. A flowchart of the integration scheme is also

included in this section.

3.1 General Form

The general form of the integration algorithm described in section 2 may also be used

for a nonassociative model. Here the framework of section 2 is utilized to recast the

equations of NAV, (given in Part I [41]) and develop the following numerical algorithm.

Assume linear hyperelastie response of the model, the Cauchy (true) stress components ff

are given by

__=c'(__-,') ; ,=,. +,, (3.1)

and C" is the elastic material matrix. According to eqs. (3.42, 3.47 and 3.49) in Part I

[41], the governing equations for NAV are

i__=](J,D)r__ ;

&.__._,= 2 Z(H, fF_- g, ff__,

&_.2= 2Z(H, fF__-g, ff.2z) ;

D = q.1 - qo

where the material functions f, g,, 8a, qJ, qn are defined as follows,

F_.= M(_q- _ (3.2)

; _r, = Mot, (3.3a)

_rl = Mat (3.3b)

(3.4)

g'=2z., £D)

(3.5a)

(3.5b)
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2/_ _D)
(3.5c)

[ D--Do

(3.5d)

s= _ M(,,-,,)__ _

(3.50

(3.50

Note that ,9, A, _ I-_, m, n, Do, C and 8 are material constants, and hv is a function of the

drag stress D (see eq. 3.53 in Part I [41]). Note also that due to the assumption of an

isotropic material, _, _ found in the expression for M, (eq. 2.5) are set to zero, thus,

M = P. In this simpler case, following a similar procedure as in section 2, we form the

matrix Z, termed the generalized inverse of the deviatodc projection P, for different

spaces; e.g., in three-dimensions,we have

(3.6a)

where _ [.1 i_i_t_ a diagoml matrix with entries in [.]. Also, for genen_ed plane

stress (plates/shells), we have:

Z=F-' ; P=(5x5) (fi'omP ineq.(3.24a)inPartI[41]) (3.6b)

Again, the objective in solving the incremental problem is to find o-.+_ ,a.+_ and

D_+_at time t,+_ based upon the converged values, o"n ,a n ,D_ and Aeo at time t, for the

given At and A_ whereas n is the step counter. From the rate form of, dr, eq. (3.1), the

evolution equations (3.2-3.4) &,, &z and/), and by using the implicit ELder scheme, the

following expressions are derived,



II

o',,+_ = o'.+ C" A_e- _y'F_,,+_

= +=,z(,:_..,-

D.+,=D.+At(q_-q_,)

(3.7)

(3.8a)

(3.8b)

(3.9)

For a local Newton-Raphson scheme to update state variables, it is necessary to form

residual vectors in terms of the variables, i.e.,

R_ = cry+,- _ - C" A£+ At/F_.+,

R_. =as, m -a..._. - 2Atttff Z F__,, + 2Atg, Z__,

R_., = at,,+ ' -a__t - 2AtHJ Z F__,,+,+ 2Atg, Z __!,m

_=&,+&,

Rz, = D,,+,- D,,- At(qj -qz_)

(3.10)

(3.11a)

(3.1 lb)

(3.11 c)

(3.12)

The local iterative update expressions are based on a truncated Taylor's expansion for the

_Rvectors about the last updated state, at a typical iteration k --) k+l

k+! k k
_., = __., + Aa__+,

_÷,=a k +_,ass+ l -- z n+l

k+, = a t + dnt.k__.+a
_/n+l "--L/_i

a__t+k+l k+l -I- _ k+l
I "- _zw,. I _ln+ !

Dn+t+l t t, = D_+, + AD.+,

where expressions for the various increments shown above are as follows:

(3.13)

(3.14a)

(3.14b)

(3.14c)

(3.15)

(3.16)
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+s,r.Aa,' I

(3.17'o)

(3.18)

the differentials of the material

(3.21a)

(3.21b)

Among the matrices defined in eqs. (3.16, 3.17 and 3.18), K is the iterative Jacobi matrix,

and is defined as

K = P A- PB. PC-LPD (3.22)

v___= s_sgRD _ F (3.20a)

v,, =sgRD(s2, ZF-s3Zx_z ) (3.20b)

va___z_=agRD($2tZI'-s4ZIg__zt ) V.._a = Va + Va, (3.20c)

relative to the residual function of state variables and are defined as:

In the above, the scalar quantities, srsg, relative to

functions in eqs. (3.5), are given as

s_ = At f_ s2, = 2At H,f_ s2, = 2At H,f_ (3.19a)

s3=2Atg, o s,=2Atg/D ss=Atqa's se=O (3.19b)

, --1

s_ = Atqs _ ss = AtqD _ s9 = (3.19¢)
1--ST--S 8

Where, the second subscript in the primed quantities indicates the variable with respect to

which the differentiation is performed. The vectors used in eqs 0.16, 3.17 and 3.18) are
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wh_e,

(3.23a)

(3.23b)

in which matrices P_ - P7 result from state variables and thek differentials, they are defined

as

p,_-_,c(:u+:;:®:) (3.24a)

_,.-2_M.:(:¥+:;r®r) (3.24b)

_,,-2_M,:(:¥+:_c®r) (3.24c)

P,,=2_z(g,,:®:) (3.24d)

P,, = 2At g, Z M P,t = 2At g t Z M (3.24e)

P5 = s:ss9 C" F ® F (3.240

P6,=sssg(s2,ZF®F-s4Zx_!®I" ) (3.24g)

_. = I+ p2.+p4.- _ -_. _, =/+ P2,+P4,-_,- _, (3.2411)

Note that all the arrays and functions in eqs. (3.16-3.24) are evaluated based on the last

k k k k
D,_+,)updated state (o',+_, a,,,+_, at,+_ and which indicate implicit integration scheme.

Finally, the consistent tangent stiffness may be derived directly from integration sheeme

and is defined as

C" = K-' C" (3.25)
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Note that K (defined in eq. 3.22) is no longer symmetric, thus leading to unsynmletric C _,

which is a major difference between the NAV and GVIPS (whose consistent tangent

stiffi_ess derived in section 2.3 is synunetric), with significant implication regarding the

numerical implementation on both the local- and global- stiffness levels.

3.2 Integration Scheme

As shown above, GVIPS and NAV have the same implementation format, thus, NAV

was chosen as the example for presenting the details of the algorithm. The flowchart is

included in Appendix I. The box labeled Global Iteration represents the calculation of the

structural stiffness and residual force at the global level. The global structural stiffness is

based on the current local material stiffnesses that vary with the level of inelasticity

involved. The purpose of the material model is to integrate the rate form equations (flow

and evolution laws) of the viscoplastic model over the step size At and obtain the current

material stiffness required for the update of the structural stiffness and the increment of

stress Ao at the material level. In the flowchart of Appendix I, the subroutines with the

m13 prefix are those necessary to perform the implicit integration of NAV. The main

subroutine, m13nrS, is a driver subroutine for the implementation of NAV. R calculates

increments of stress and internal variables, updates them and checks convergence. Finally,

it passes the viscoplastic stiffness matrix, and, converged stress to the global level

calculation. Eqs. (3.13-3.21, 3.25) are involved in this subroutine. Subroutine m13heav5

calculates the pretinent material scalar functions (eq. 3.5) and their differentials.

Subroutine m13err deals with calculation of the residual functions of stress and internal

variables during the local iterations. Eqs. (3.10-3.12) are involved in this subroutine.

Subroutine m13k calculates iteration Jacobi matrices of stress and internal variables. Eqs.

(3.22-3.24) are implemented in this subroutine. Subroutine m131ines performs line search

algorithm discussed in section 4. Other subroutines used in m13nr5 are also introduced in

Appendix I.
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4 Implementation of Line Search

4.1 Introduction

Although the implicit scheme described above is unconditionally stable, its

successful application still requires proper selection of the size of the steps utilized. In

this regard two factors are important: (i) accuracy; and (ii) convergence of the local

iterations. A simple time-subincrementing strategy was found to be effective in

obtaining accurate results especially when dealing with regions of discontinuity in the

state space. However, this was found to be insufficient to obtain a computationaily

efficient solution for a highly nonlinear problem, such as viscoplasticity. When a large

time-step size is chosen, too many subincrements are needed, which leads to

inefficiency. Thus a more sophisticated solution procedure, namely, a line search

algorithm, is required to produce an effective, robust solution algorithm.

The line search technique is an important feature of most numerical techniques

for unconstrained optimization and can be used with a wide range of iterative solution

procedures such as full Newton-Raphson iteration. It's well known that classical

Newton-Raphson is fast and stable only when the trial solution is close to the

converged value. For nonlinear problems, the triai solution is usually far away from

the real solution, thus full step size of iterative increment vector may cause either

wrong direction or out-of-range updated value. The purpose of the line search

algorithm is to guide the solution towards convergence, especially when convergence

becomes more and more difficult, e.g. using excessive number of iterations,

oscillations in residuals, stresses, and displacement norms, and searches for a scalar

multiplier that adjusts the amount of the iterative increment vector to be updated

within each iteration.
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Line search methods were utilized to solve complex nonlinear problems by

many researchers. Crisfield [I0, I I] applied it to arc-length algorithms to solve

concrete cracking problems. In elasto-plasfic analyses, Simo and Taylor [43] suggest

that the line searches be incorporated with a consistent tangent stiffness. In [43], Simo

claims that the use of fine search is essential for robust performance of Newton's

method. Caddemi and Martin [6] have also demonstrated that in elasto-plastic analysis

convergence is not guaranteed unless line search is used.

Among all of the research work mentioned above, the line search method was

used to optimize the system of the global equations and minimize the out-of-balance

force. Actually, the concept of line search may be applied at either the global

(structural) iteration level or at the local (constitutive) iteration level. At the global

(structural) level, the concept of the line search algorithm pertains to minimizing the

total potential energy, that is, the work done by the residual force due to the iterative

displacement. On the local (constitutive) level, it adjusts the suitable increment step of

stress and internal variables to guarantee the convergence of the stress and internal

variables at material points, and does not involve global iteration. In this report, the

line search algorithm was applied to the local level.

4.2 Line Search Strategy

The objective of the line search is to optimize the solution system and minimize

the out-of-balance entropy. Thus, a criterion is needed to judge whether or not a

given iterative solution is better than a previous one. This criterion takes the form of

an objective function or cost function. In the following, some basic concepts are

described that are applicable to unconstrained numerical optimization methods.

Instead of using classical Newton iteration scheme in eq. (1.1), the following

iterative procedure was utilized:

__k+_= _k + r/A_k k=O,1,2...... (4.1)
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In this equation, the superscript k represents the iteration number, _o is any starting

value, and A_ k represents an increment value. The iterative scheme described in

eq.(4.1) is continued until optimality conditions are satisfied, or an acceptable new

value is obtained. Here, _k represents the state variable vector associated with a

viscoplastic constitutive model algorithm. For the GVIPS model,

and for the NAV model,

_k = k (4.2a)

f:/k

Define a scalar function f as the objective function to be optimized as follows:

f_) = _R.dg ", df = R.dX (4.3)

where, R is the residual function of the state variables. Symbol "." indicates dot

product of two vectors. Again for the GVIPS model,

Rk-- (----_ (4.4a)

-

and for the NAV model,

"'J
R k = --", (4.4b)
-- Rk

For unconstrained problems, the residual comes from the difference between the

current value and the previous converged value. The calculations for A_ depend on

the residual function and its derivatives at the previous step. In order to reach a

minimum point for the objective function f(_2), a suitable value of the scalar rl must be

found, such that
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f(z_÷')= f(z_+ 11_ )

is a minimum.

Assume AI__k is known at iteration k. According to the stationary condition:

_

(4.5)

dr/ o__ dr/ o__ - (4.6)

From eq. (4.3), eq(4.6) becomes:

_Rk+l- AY=k = 0 (4.7)

Now consider,

s(n) = R_Cn)._Z_

in which I__k and AE_flare fixed, and _Rand s are functions of 11. When Vl = 0,

so= sCn=O) = _._. _R(n=o) = A_._._V.o

(4.s)

(4.9)

_R0 is the residual function of stressand the internalvariables at the end of the

previous iteration.According to optimization theory, the best (optimum) solutionis

sol) = 0,but numerically,thisisnot realisticallypossibleand itisinefficientto try and

achieve thisobjective.In practice,a 'slack'linesearch isused, see Fig I,wherein the

objectiveisto make the modulus of s(rl)small incomparison to the modulus of So,i.e.

Ir(r/)l=_-_<p_ (4.10)

Sol

where p_, is the 'line-search tolerance'. Based on past research experience, a suitable

value for 13uis on the order of O.8 [11].

4.3 Search for rl

In the line search procedure, a key step is the search for an optimum rl for

which the requirement ( eq. (4.8)) is met. Crisfield [11] suggests using a simple linear

interpolation and extrapolation. Usually no more than two searches for rl are

necessary. Initially, s0/so = 1 at TI0=O, and the line search is started using rl=l, which
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corresponds to the basic Newton-Raphson iteration. From eq.(4.8), st = s(_=l), thus

the initial search for a new "improved" value for rl (denoted as _i in Fig. 2)

completely depends on the value of s_/s 0 (see point "1" in Fig. 2). Figures (2-3) show

four possibilities, but the case most frequently encountered is that shown in fig. 2.

Because of the stiff behavior of the viscoplastic model, A__ may be very large

especially if a large time-step size is chosen. Consequently, the residual function may

also be very large, i.e. I st [ may be very large, which leads to a very small TIl a_er

linear interpolation. Thus, a double interpolation is used by means of s_/So (denoted as

point "2" in Fig. 2) and either s0/s0(Fig 2a) or s_/SO (Fig. 2b) to obtain an updated

value v12 which is more accurate than TIl. Note that a minimum of 0.01 is set for 11.

Consider Figure 3a, which is a possible extrapolation case. When s_/s0 is near

1.0, extrapolation could result in a large 11 which could lead to excessive iterations.

Even if vl is not very large, as found in the present research a value of 11 which is less

than ] is used to speed iteration. For example, Crisfield [11] suggests a maximum

value of 10.0 for vl when considering concrete cracking analysis. In a similar fashion,

negative extrapolation of Fig. 3b is not used in the model implementation.

Theoretically, this could not happen because of the hardening behavior of

viscoplasticity, only a soi_ening problem may behave like this. Thus, if either of the

cases described in Figure 3 occur, vl is assumed to be 1 which is the regular Newton-

Raphson iterative method.

Numerical tests have shown (refer to Part I [41]) that the use of line search

leads to significant improvement in the convergence and computational efficiency with

regards to CPU time and iterations. It has also been shown that line search helps

convergence greatly for the nonassociative viscoplastic model such that subincrements

are not required. The only additional computational effort, in comparison with a

formulation without line searches, would be the calculation of the inner product (eq.

4.8) which is considered to be almost negligible.
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5. Summary and Conclusions

The general computational framework using a fully implicit backward Fouler

integration method has been presented and has been shown [41] to be successful for both

the Generalized Viscoplasticity with Potential Structure (GVIPS) and Non-associative

Viscoplastic models (NAV). Original equations for the NAV model developed by Freed

are recast into a matrix format similar to that used for GVIPS in order to facilitate the

model's implementation into the newly developed framework. Only these Newton iterative

schemes developed herein will provide, uniformly-valid, convergent, robust integration for

both GVIPS and NAV. The algorithm was written in a concise matrix format so as to

provide sufficient generality and is automatically valid for both isotropic and anisotropic

cases in either full space or subspaces.

The "slack" method, which is the form of line search used in the present algorithm,

enables GVIPS and NAV to converge stably, with sufficient accuracy, and significantly

improved efficiency. Convergence may be achieved for large load steps, whereas

traditional fixed stepping without line search will fail. Thus, the proposed computational

framework makes the solution of realistic nonlinear finite dement analysis problems

possible. The only additional computational effort of line search method in comparison

with a formulation without line search, would be the calculation of the inner product,

which is believed to be negligible as compared to the total calculations involved in a

nonlinear finite element analysis.
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Appendix I: Flowchart for Implicit Integration Algorithm

I Global Iteration ]

II ,
ml3nr5 (Box 1) to_pd.t__,___,,___,,D._ I

Given At, As_,_l

i
ml3heav5

ml3maxJ I Iml3JI

i
(Box 2)

1 l 1
[ml3J II ml3err] ml3heav5]

ml 3nr5_ Driver for performing implicit integration of rate-dependent

equations

ml 3heav5-- Calculate step or smoothing functions

ml3err---m Calculate error functions during local iteration

ml 3k------ Calculate Jacobi matrix during local iteration

ml31ines_ Perform line search algorithm

ml3j Calculate invariance, i.e., eq. (3.60

ml3maxj_ Calculate maximum invariance
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Box 1

Iterative procedure ( subroutine ml3nr5 )

°

• I
Given G_ ,_,,tx,,D,,A__, At.

• 0 0 , 0
_, _a°, = a_.,ct,,,+,= ct....___.;cq,+,= ct...._.t.,D,,+,= D.

2. Evaluate material function and differentiation. ( subroutine ml3heav5 )

t_ g, qj, qD, fD', ......

3. Evaluate residual fun_don ( subroutine ml3err )

I,)R,,(_,,+,), --',,+,, at,,+ ' , R D D,,+,

4. Evaluate Jacobi matrix K ( subroutine ml3k )

k k

5. Evaluate Ao'_+_,Act,.+_,Aotl.+_,_*

A_,={ A._÷,,A_*,___,_+,,_*:

6. evaluate current value.
k+l k k

0",,.i +o'.1 = dg.,,+l

a *,,+1= a , ,,+1 " "" _.+i __.L,,+I

D,+l _ k + zlD_ I,,+i - D,,+I

7. Evaluate residual function based on current value. ( subroutine ml3err

_¢+I) _ I k+l_ . [CI[, k+ll R_)(D_':)

_: {.o }.+1 = ,P_,,R,,,,Ro r
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Box 1 continued:

o

goto Box 2 ( line search algorithm - subroutine ml31ines )
endif

9. Cheek convergence.

, .+, _a__, I
if _,,+1 > Tol

else

k+l [

.+l[

k=-k+l

goto 2.

k+l
--_,,+I= _n+l

k+l

ZSn+l =(]Ss+l

k+i

C['/_t+l -- 0['! m+1

Dn+I = T)k+l
_n+1

then

10. Evaluate K based on converged value and stiffness matrix.

( subroutine ml3k )
C _ =K-1C •

return
end
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Box 2.
Line search scheme ( subroutine ml31ines )

1.Initialize

A--_l ,_+l, rh = 1, rl_ = 0,R. = _.+l_k+l,p_ = R___.+lk

2. Bracketing

IF sign(A_:÷, .Ro)x sign(A__:+, .4)<0 then

interplotating_ find 11.

evaluate __+, = ___+, + rlA___+,

evaluate residual function based on __.,_+]( subroutine m13err )

O_ _ Or, _ ,

5{.°...."°."°}"

IF sign(AE_+_ * R_)x sign(A__:+_ * P_)<0 then

interplotaing new rl between rib and 11

else

interplotaing new 11 between rla and 11

endif

ELSE

rl=l

ENDIF

IF(n < lVran.) n=Min.

3. Update
k+l k k

¢. Return.
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